Sains Malaysiana 54(8)(2025): 2045-2057
http://doi.org/10.17576/jsm-2025-5408-14
Microstructural Evolution and Performance of
Heat-Treated Ti6Al4V in Laser Powder Bed Fusion
(Evolusi Mikrostruktur dan Prestasi TI6AL4V Haba Terawat dalam Haba Pelakuran Lapisan Serbuk Laser)
FARHANA MOHD FOUDZI1,2,*,
MINHALINA AHMAD BUHAIRI1,2,3, FATHIN ILIANA JAMHARI1,2,
NORHAMIDI MUHAMAD1,2, INTAN FADHLINA MOHAMED1,2, ABU
BAKAR SULONG1,2, NASHRAH HANI JAMADON1,2 & NABILAH
AFIQAH MOHD RADZUAN1,2
1Advanced
Manufacturing Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of
Mechanical and Manufacturing Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Doctoral School
on Materials Science and Technologies, Óbuda University, Nepszinhaz u. 8, 1081 Budapest, Hungary
Diserahkan: 21 Februari 2025/Diterima: 16 Jun 2025
Abstract
Ti6Al4V parts produced via laser powder
bed fusion (LPBF) frequently exhibit high residual stress, where heat treatment
has been utilized to relieve this stress. This study aims to investigate the
effect of annealing heat treatment on the overall performance of Ti6Al4V
fabricated using LPBF. Printed Ti6Al4V samples were heat treated at 935 °C for
8 hours with a heating rate of 5 °C/min and a cooling rate of 0.60 °C/min. The
overall performance such as physical properties, mechanical properties and
microstructure observation between as-built and heat-treated
samples were compared. The heat treatment was able to produce high-density
parts, with surfaces as smooth as 5.70 μm,
reaching up to 99.28% density. The annealing process significantly improved the
ductility of Ti6Al4V parts by up to 231%, while decreasing the tensile strength
by 28% and the hardness by 13%. The microstructure of as-built samples shifts from
acicular α' martensite to α+β phases after annealing at 935 °C
for 8 hours, supporting the changes in mechanical performance. This preliminary
study concludes that the heat treatment used following LPBF printing can create
Ti6Al4V samples with acceptable physical, mechanical, and microstructure
properties.
Keywords: Hardness; heat treatment;
laser powder bed fusion; microstructure; Ti6Al4V
Abstrak
Produk Ti6Al4V yang dihasilkan melalui kaedah pelakuranlapisan serbuk laser (LPBF) kebiasaannya menjana tegasan baki yang tinggi dengan rawatan haba digunakan untuk mengurangkan tegasan ini. Penyelidikan ini bertujuan untuk mengkaji kesan rawatan haba penyepuhlindapan ke atas prestasi keseluruhan produk Ti6Al4V yang dihasilkan menggunakan LPBF. Sampel Ti6Al4V telah dirawat haba pada 935 °C selama 8 jam menggunakan kadar pemanasan sebanyak 5 °C/min dan kadar penyejukan sebanyak 0.60 °C/min. Prestasi keseluruhan merangkumi sifat fizikal, sifat mekanikal dan analisis mikrostruktur antara sampel sebelum dan selepas dirawat haba telah dibandingkan. Rawatan haba yang telah dijalankan mampu menghasilkan sampel berketumpatansetinggi 99.28% dengan permukaan selicin5.70 μm.
Proses penyepuhlindapan ini juga berjaya meningkatkan kemuluran sampel Ti6Al4V sebanyak 231%, namun proses ini mengurangkan kekuatan tegangan sebanyak 28% dan kekerasan sebanyak 13%. Mikrostruktur sampel yang telah dicetak 3D berubah daripada jejarum α' martensit kepada fasa campuran α+β selepas dirawat haba pada 935 °C selama 8 jam dan ini menyokong perubahan sifat mekanikal. Kajian awal ini menyimpulkan bahawa rawatan haba yang digunakan selepas percetakan LPBF mampu menghasilkan sampel Ti6Al4V dengan sifat fizikal, mekanikal dan mikrostruktur yang boleh diterima.
Kata kunci: Kekerasan; mikrostruktur; pelakuran lapisan serbuk laser; rawatan haba; Ti6Al4V
RUJUKAN
Abd-Elaziem, W., Elkatatny, S., Abd-Elaziem, A-E.,
Khedr, M., Abd El-Baky, M.A., Hassan, M.A., Abu-Okail,
M., Mohammed, M., Järvenpää, A., Allam, T. & Hamada, A. 2022. On the
current research progress of metallic materials fabricated by laser powder bed
fusion process: A review. Journal of Materials Research and Technology 20:
681-707.
Aboulkhair, N.T., Maskery,
I., Tuck, C., Ashcroft, I. & Everitt, N.M. 2016. Improving the fatigue
behaviour of a selectively laser melted aluminium alloy: Influence of heat
treatment and surface quality. Materials & Design 104:
174-182.
Aripin, M.A., Sajuri, Z., Jamadon, N.H., Baghdadi, A.H., Mohamed, I.F., Syarif, J., Muhammad Aziz, A. & Jamhari,
F.I. 2023. Microstructure and mechanical properties of selective laser melted
17–4 PH stainless steel; build direction and heat treatment processes. Materials
Today Communications 36: 106479.
Azgomi, N., Tetteh, F., Duntu, S.H.
& Boakye-Yiadom, S. 2021. Effect of heat treatment on the microstructural
evolution and properties of 3D-printed and conventionally produced
medical-grade Ti6Al4V ELI alloy. Metallurgical and Materials
Transactions A 52: 3382-3400.
Bartolomeu, F., Gasik, M., Silva, F.S., Miranda, G.
2022. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A
Review Focused on the Processing and Microstructural Parameters Influence on
the Final Properties. Metals 12: 986.
https://doi.org/10.3390/met12060986
Bassini, E., Sivo, A., Martelli, P.A., Rajczak,
E., Marchese, G., Calignano, F., Biamino, S. & Ugues, D. 2022. Effects of the solution and first aging
treatment applied to as-built and post-HIP CM247
produced via laser powder bed fusion (LPBF). Journal of Alloys and
Compounds 905: 164213.
Cao, L., Li, J., Hu, J., Liu, H., Wu, Y. & Zhou, Q. 2021.
Optimization of surface roughness and dimensional accuracy in LPBF additive
manufacturing. Optics & Laser Technology 142: 107246.
Chen, J., Fabijanic, D., Brandt, M.,
Zhao, Y., Ren, S.B. & Xu, W. 2023. Dynamic α globularization in laser powder bed fusion additively manufactured Ti-6Al-4V. Acta Materialia 255: 119076.
Chen, Y., Fu, J., Zhou, L., Zhao, Y., Wang, F., Chen, G.
& Qin, Y. 2024. Effect of heat treatment on microstructure and mechanical
properties of titanium alloy fabricated by laser–arc hybrid additive manufacturing. Coatings 14(5):
614.
Drstvenšek, I., Zupanič, F., Bončina, T., Brajlih, T.
& Pal, S. 2021. Influence of local heat flow variations on geometrical
deflections, microstructure, and tensile properties of Ti-6Al-4 V products in
powder bed fusion systems. Journal of Manufacturing Processes 65:
382-396.
Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad Buhairi, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad, Intan Fadhlina Mohamed, Nashrah Hani Jamadon & Kim Seah Tan. 2023a. Influence of heat treatment parameters on
microstructure and mechanical performance of titanium alloy in LPBF: A brief
review. Journal of Materials Research and Technology 24:
4091-4110.
Fathin Iliana Jamhari, Farhana Mohd Foudzi, Minhalina Ahmad Buhairi, Norhamidi Muhamad, Intan Fadhlina Mohamed, Abu Bakar Sulong & Nabilah
Afiqah Mohd Radzuan. 2023b. Impact of hot isostatic
pressing on surface quality, porosity and performance of Ti6Al4V manufactured
by laser powder bed fusion: A brief review. J. Tribol. 36:
1-15.
Ghio, E. & Cerri, E. 2022. Additive manufacturing of
AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: A review
of heat treatments effects. Materials 15(6): 2047.
Giovagnoli, M., Silvi, G., Merlin, M., Di Giovanni,
M.T. 2021. Effect of different heat-treatment routes on the impact properties
of an additively manufactured AlSi10Mg alloy. Materials Science and
Engineering: A 802. doi:
10.1016/j.msea.2020.140671.
Gruber, K., Stopyra, W., Kobiela, K., Madejski, B., Malicki,
M. & Kurzynowski, T. 2022. Mechanical properties
of Inconel 718 additively manufactured by laser powder bed fusion after
industrial high-temperature heat treatment. Journal of Manufacturing
Processes 73: 642-659.
Guo, S., Li, Y., Gu, J., Liu, J., Peng, Y., Wang, P., Zhou, Q.
& Wang, K. 2023. Microstructure and mechanical properties of Ti6Al4V/B4C
titanium matrix composite fabricated by selective laser melting (SLM). Journal
of Materials Research and Technology 23: 1934-1946.
Hosseini, E. & Popovich. V.A. 2019. A review of
mechanical properties of additively manufactured Inconel 718. Additive
Manufacturing 30: 100877.
Kasperovich, G. & Hausmann, J. 2015. Improvement of
fatigue resistance and ductility of TiAl6V4 processed by selective laser
melting. Journal of Materials Processing Technology 220:
202-214.
Kerealme, S., Bai, C., Jia, Q., Xi, T., Zhang, Z., Li, D., Xia, Z., Yang,
R. & Yang, K. 2022. Effect of annealing temperature on as-cast Ti6Al4V–5Cu
alloy microstructure, tensile properties, and fracture toughness. Materials
Today Communications 33: 104508.
Knowles, C.R., Becker, T.H. & Tait, R.B. 2012. Residual
stress measurements and structural integrity implications for selective laser
melted Ti-6Al-4V: General article. South African Journal of Industrial
Engineering 23(3): 119-129.
Korkmaz, M.E., Gupta, M.K., Waqar, S., Kuntoğlu,
M., Krolczyk, G.M., Maruda, R.W. & Pimenov, D.Y.
2022. A short review on thermal treatments of Titanium & Nickel based
alloys processed by selective laser melting. Journal of Materials
Research and Technology 16: 1090-1101.
Kruth, J-P., Deckers, J., Yasa, E. & Wauthlé,
R. 2012. Assessing and comparing influencing factors of residual stresses in
selective laser melting using a novel analysis method. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 226(6): 980-991.
Lebea, L., Ngwangwa, H.M., Desai, D.
& Nemavhola, F. 2021. Experimental investigation
into the effect of surface roughness and mechanical properties of 3D-printed
titanium Ti-64 ELI after heat treatment. International Journal of
Mechanical and Materials Engineering 16: 16.
Lee, J-Y., Nagalingam, A.P. & Yeo, S.H. 2021. A review
on the state-of-the-art of surface finishing processes and related ISO/ASTM
standards for metal additive manufactured components. Virtual and
Physical Prototyping 16(1): 68-96.
Lee, W., Hyun, Y.T., Won, J.W.
& Yoon, J. 2024. Numerical simulation for β/α transformation of
Ti–6Al–4V alloy using a lattice Boltzmann - Cellular automata method. Journal
of Materials Research and Technology 32: 1416-1425.
Lekoadi, P., Tlotleng, M., Annan, K., Maledi, N. & Masina, B. 2021. Evaluation of heat
treatment parameters on microstructure and hardness properties of high-speed
selective laser melted Ti6Al4V. Metals 11(2): 255.
Leuders, S., Thöne, M., Riemer, A., Niendorf,
T., Tröster, T., Richard, H.A. & Maier, H.J.
2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by
selective laser melting: Fatigue resistance and crack growth performance. International
Journal of Fatigue 48: 300-307.
Majumdar, T., Bazin, T., Massahud Carvalho Ribeiro, E., Frith, J.E. & Birbilis,
N. 2019. Understanding the effects of PBF process parameter interplay on
Ti-6Al-4V surface properties. PLoS ONE 14(8): e0221198.
Mazeeva, A., Masaylo, D., Konov, G. & Popovich, A. 2024. Multi-metal additive
manufacturing by extrusion-based 3D printing for structural applications: A review. Metals 14(11):
1296.
Mazlan, M.R., Jamadon, N.H., Rajabi,
A., Sulong, A.B., Mohamed, I.F., Yusof, F. & Jamal, N.A. 2023. Necking
mechanism under various sintering process parameters - A review. Journal
of Materials Research and Technology 23: 2189-2201.
Minhalina Ahmad Buhairi,
Farhana Mohd Foudzi, Fathin Iliana Jamhari, Abu Bakar Sulong, Nabilah Afiqah Mohd Radzuan, Norhamidi Muhamad,
Intan Fadhlina Mohamed, Abdul Hadi Azman, Wan Sharuzi Wan Harun & Al-Furjan, M.S.H. 2023. Review on
volumetric energy density: Influence on morphology and mechanical properties of
Ti6Al4V manufactured via laser powder bed fusion. Progress in Additive
Manufacturing 8(2): 265-283.
Motyka, M. 2021. Martensite formation and decomposition
during traditional and AM processing of two-phase titanium alloys - An
overview. Metals 11(3): 481.
Narasimharaju, S.R., Zeng, W., See, T.L., Zhu, Z., Scott,
P., Jiang, X. & Lou, S. 2022. A comprehensive review on laser powder bed
fusion of steels: Processing, microstructure, defects and control methods,
mechanical properties, current challenges and future trends. Journal of
Manufacturing Processes 75: 375-414.
Ni, C., Zhu, L., Zheng, Z., Zhang, J.,
Yang, Y., Yang, J., Bai, Y., Weng, C., Lu, W.F. & Wang, H. 2020. Effect of
material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated
by selective laser melting. Journal of Alloys and Compounds 848:
156457.
Pal, S., Bončina, T., Lojen, G., Brajlih, T., Fabjan, E.Š., Gubeljak, N., Finšgar, M.
& Drstvenšek, I. 2024. Fine martensite and
beta-grain variational effects on mechanical properties of Ti–6Al–4V while
laser parameters change in laser powder bed fusion. Materials Science
and Engineering: A 892: 146052.
Shi, X., Ma, S., Liu, C., Chen, C., Wu, Q., Chen, X. &
Lu, J. 2016. Performance of high layer thickness in selective laser melting of
Ti6Al4V. Materials 9(12): 975.
Su, G., Chang, J., Zhai, Z., Wu, Y., Ma, Y., Yang, R. &
Zhang, Z. 2024. On the role of grain morphology in the mechanical behavior of laser powder bed fusion metastable β
titanium alloy. Materials Science and Engineering: A 909:
146844.
Su, J., Jiang, F., Li, J., Tan, C., Xu, Z., Xie, H., Liu, J.,
Tang, J., Fu, D., Zhang, H. & Teng, J. 2022. Phase transformation
mechanisms, microstructural characteristics and mechanical performances of an
additively manufactured Ti-6Al-4V alloy under dual-stage heat treatment. Materials
& Design 223: 111240.
Ter Haar, G.M. & Becker, T.H. 2021. Low temperature
stress relief and martensitic decomposition in selective laser melting produced
Ti6Al4V. Material Design & Processing Communications 3(1):
e138.
Tsai, M-T., Chen, Y-W., Chao, C-Y.,
Jang, J.S.C., Tsai, C-C., Su, Y-L. & Kuo, C-N. 2020. Heat-treatment effects
on mechanical properties and microstructure evolution of Ti-6Al-4V alloy
fabricated by laser powder bed fusion. Journal of Alloys and Compounds 816:
152615.
Usha Rani, S., Sadhasivam, M., Kesavan, D., Pradeep, K.G.
& Kamaraj, M. 2024. A multi-scale microscopic study of phase
transformations and concomitant α/β interface evolution in additively
manufactured Ti-6Al-4V alloy. Materials Science and Engineering: A 900:
146400.
Wang, D., Dou, W. & Yang, Y. 2018. Research on selective
laser melting of Ti6Al4V: Surface morphologies, optimized processing zone, and
ductility improvement mechanism. Metals 8(7): 471.
Wang, M., Wu, Y., Lu, S., Chen, T., Zhao, Y., Chen, H. &
Tang, Z. 2016. Fabrication and characterization of selective laser melting
printed Ti–6Al–4V alloys subjected to heat treatment for customized implants
design. Progress in Natural Science: Materials International 26(6):
671-677.
Wang, Y., Yang, G., Zhou, S., Sun, C., Li, B., An, D., Zhang,
S. & Xiu, S. 2022. Effect of laser remelting on microstructure and
mechanical properties of Ti–6Al–4V alloy prepared by inside-beam powder
feeding. Materials Science and Engineering: A 861:
144266.
Zhou, Y., Wang, K., Sun, Z. & Xin,
R. 2022. Simultaneous improvement of strength and elongation of laser melting
deposited Ti-6Al-4V titanium alloy through three-stage heat treatment. Journal
of Materials Processing Technology 306: 117607.
*Pengarang untuk surat-menyurat; email: farhana.foudzi@ukm.edu.my